空気中の異物を体内に取り込む細胞を発見 - 花粉症・アレルギーの発症機構解明へのカギー

慶應義塾大学は北海道大学との共同研究により、呼吸によって吸い込んだ異物の取り込みに働く特殊な細胞を発見した。

呼吸器粘膜は空気中の花粉、埃、微生物に常にさらされている。我々の体はこれらの微細な粒子を認識し免疫システムを働かせることで体を守るが、ときに過剰に反応しアレルギーを起こす。一方で体内の免疫システムが呼吸器に侵入した異物を体内に取り込む仕組みは不明だった。

今回研究グループは、マウスの気管・気管支に M 細胞と呼ばれる細胞が存在し、呼吸器粘膜に存在する異物を取り込むことを見出した。また、この呼吸器 M 細胞は慢性閉塞性肺疾患モデルマウスなどの様々な呼吸器疾患の病変部に存在することを明らかにした。さらに、呼吸器 M 細胞の分化誘導に必須な因子を見出し、これにより呼吸器 M 細胞を試験管内で培養することに成功した。

呼吸器におけるアレルギー、感染において抗原や微生物が生体に侵入する経路を明らかにしたものであり、呼吸器疾患の発症や悪化のメカニズムの解明につながる。今後は呼吸器 M 細胞からの抗原取り込みを制御することで、新たな予防・治療法開発等の臨床応用への発展が期待される。

本研究成果は、2019 年 6 月 11 日に国際学術誌『Frontiers in Immunology』 電子版に掲載された。

本研究では腸管の抗原取り込み機構に着目して研究を進めた。腸管では M 細胞と呼ばれる上皮細胞が存在し、異物に対する高い取り込み能力を持っている。しかし、呼吸器に同様な M 細胞が存在しているかは不明だった。そこで、腸管 M 細胞に対する特異的分子マーカーである GP2 と Tnfaip2 を用いて、マウスの気管・気管支の免疫染色を行い GP2 Tnfaip2 陽性細胞を探索した。その結果、少数の陽性細胞が気管・気管支上皮に存在していた(図 1A)。

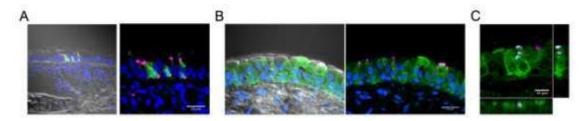


図 1 マウス気管上皮に存在する Tnfaip2 GP2 陽性細胞

- (A) 正常状態でのマウス気管の免疫組織染色像 Tnfaip2 (緑) GP2 (赤紫) 陽性の細胞が少数認められた。
- (B) RANKL 投与したマウスの免疫染色像 GP2 Tnfaip2 陽性細胞の増加が認められた。
- (C) GP2 (青) Tnfaip2 (緑) 陽性細胞は点鼻投与したナノ粒子 (赤紫) を効率的に取り込む。

続いて、M 細胞の分化を促進するサイトカイン RANKL をマウスへと投与したところ、気管・気管支に非常に多くの GP2 Tnfaip2 陽性細胞が出現した (図 1B)。この細胞は空気中の異物に見立てたナノ粒子を効率よく取り込む能力を持っていた (図 1C)。電子顕微鏡により細胞の微細構造を観察したところ、線毛を持たない上皮細胞であることが分かった。これらの特徴は腸管 M 細胞とよく似ていることから、GP2 Tnfaip2 陽性細胞は呼吸器 M 細胞であると結論づけた。

続いて呼吸器 M 細胞と呼吸器疾患の関係を検証するために、疾患モデル動物を用いて呼吸器 M 細胞の存在を検証した。その結果、シェーグレン症候群の病態モデルとなる Non obese diabetes (NOD)マウス、慢性閉塞性肺疾患 (COPD) モデルとしてエラスターゼ投与マウス、タバコ煙吸入マウスの気管・気管支にリンパ球浸潤が認められ (図 2)、その近傍の上皮に M 細胞が存在していることが明らかになった。

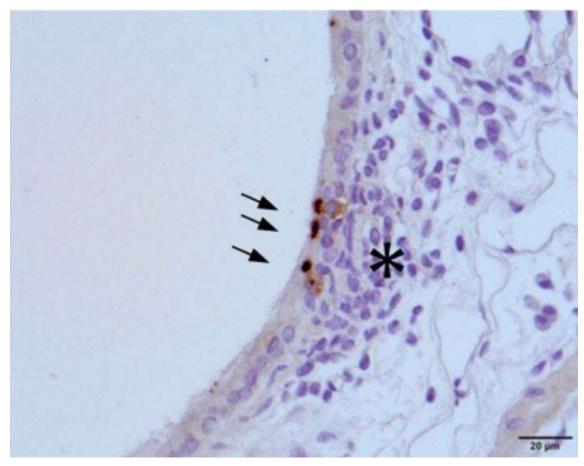


図 2 タバコ煙吸入モデルで認められたリンパ球浸潤 (*) と M 細胞 (矢印)。 呼吸器 M 細胞を試験管内で作製することができれば、動物実験では難しい呼吸器感染症などの 研究や呼吸器 M 細胞がどのように形成されるかの解析にとって非常に有用となります。そこで、マウスの気道から上皮細胞を分離し M 細胞を作製できるかを検証しました。

マウス気管から上皮細胞を分離し、上段と下段に別れた特殊な培養容器を用いて、下段に RANKL を添加した培養液、上段を空気相として気相液相界面による培養を 10 日間継続した。その結果、ナノ粒子をよく取り込む性質を持ち、M 細胞マーカーを持つ細胞を得ることに成功した(図 3)。

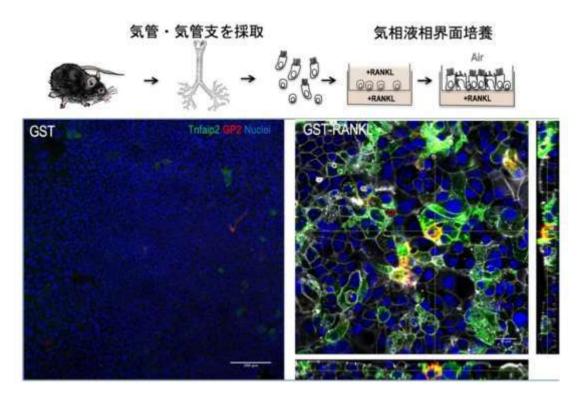


図3 マウス呼吸器 M 細胞の培養

マウス気管・気管支から上皮細胞を採取し、RANKL 存在下で気相液相界面培養することで、呼吸器 M 細胞を誘導することができた。下図左は陰性対照として GST (グルタチオン-Sートランスフェラーゼ) 存在下で培養した気管上皮細胞、下図右は GST-RANKL 存在下で培養した。 M 細胞マーカーである Tnfaip2 (緑) と GP2 (赤) で染色。

本研究は、呼吸器に腸管と同様な M 細胞が存在することを新たに見出した。今後、アレルゲンの体内侵入機構と免疫、アレルギーとの関係、呼吸器感染症と M 細胞の関係を明らかにしていくことで、呼吸器 M 細胞をターゲットとした呼吸器疾患の予防、治療法などの開発に発展していくことが期待できる。

(日文发布全文 https://www.keio.ac.jp/ja/press-releases/files/2019/6/13/190613-1.pdf)

文 JST 客观日本编辑部