# Adsorption and removal materials of environmental pollutants utilizing wastes and unused resources

Teruhisa Hongo (Department of Life Science & Green Chemistry, Faculty of Engineering Saitama Institute of Technology)



## Recycling of wastes & Utilization of unutilized resources



"Inexpensive" and "Effective" environmental purification materials

- Wastes are turned into resources by giving added values to them.
- ◆ Advanced use of low-grade or non-standard mineral resources.

high performance inorganic materials (environmental purification materials)

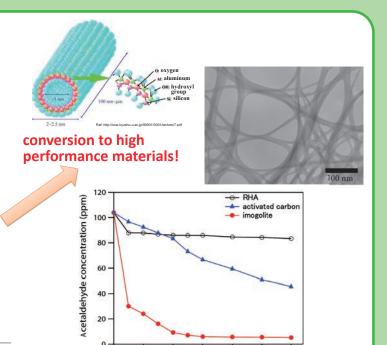
wastes, unutilized resouces

**Functionality** 

# [Rice husk ash (RHA)]

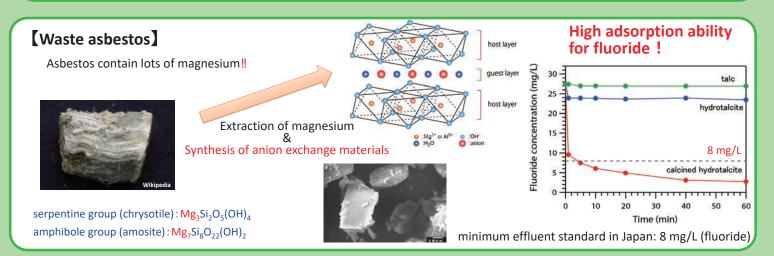
A large amount of combusted rice husk ash has been discharged from biomass power plant in southeast Asia countries!!

magnification


strong 15 day 12 dnm ×120 SE(M) 2016/00/20

40 μm

200 μm


Chemical composition of RHA (mass%)

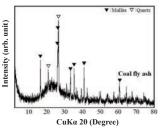
| SiO <sub>2</sub> | $Al_2O_3$ | Na <sub>2</sub> O | K <sub>2</sub> O | CaO  | TiO <sub>2</sub> | MnO  | Fe <sub>2</sub> O <sub>3</sub> | MgO  | $P_2O_5$ | LOI  |
|------------------|-----------|-------------------|------------------|------|------------------|------|--------------------------------|------|----------|------|
| 91.65            | 0.76      | 0.09              | 1.76             | 0.42 | 0.03             | 0.19 | 0.54                           | 0.48 | 1.17     | 2.90 |

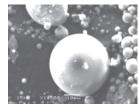


Time (min)

extremely high adsorption capacity for hydrophilic VOCs!

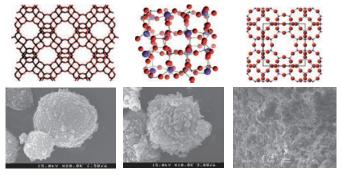



#### High purity calcium carbonate **[Blast furnace slag]** Chemical composition of blast furnace slag (mass%) It is possible to synthesize distinctively. CaO Al<sub>2</sub>O<sub>3</sub> MgO FeO TiO<sub>2</sub> MnO Total 41.12 14.04 5.38 0.27 0.61 0.43 97.01 mono phase: calcite mixed phase: calcite & vaterite Synthesized High adsorption ability for borate Anion exchange material from (ettringite) Borate concentration (mg/L) extracted Ca 20 15 Synthesis from 10 Ca extraction residue 100 Time (min) minimum effluent standard in Japan: 10 mg/L (borate) Conversion to heavy metal adsorbents with only alkali treatment 約5 nm 400 300 200 0.3~0.5 nm 100




Chemical composition of fly ash (mass%)

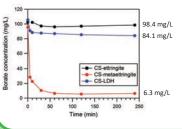
**VOCs adsorbent** 

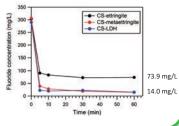

Na<sub>2</sub>O MgO Al<sub>2</sub>O<sub>3</sub> SiO<sub>2</sub> P<sub>2</sub>O<sub>5</sub> SO<sub>3</sub> K<sub>2</sub>O CaO TiO<sub>2</sub> Fe<sub>2</sub>O<sub>3</sub> Total 0.71 1.21 27.7 57.0 0.53 0.53 1.20 2.57 2.30 5.70 99.45





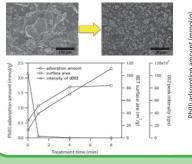
### Conversion to macroporous and mesoporous materials!

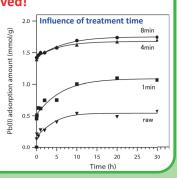

Different from conventional method, silica is unnecessary.




Applicable as various heavy metal and VOC adsorbents!

# **Concrete wastes**


It is possible to synthesize adsorbents for oxo-anions (arsenate, chromate etc.) and heavy metals (lead etc.), and phosphorus recovery materials, using concrete waste as a raw material!






### **Low grade minerals**

By mechanochemical treatment, the adsorption ability is dramatically improved!





ettringite

150

Time (h)

metaettringite



e-mail: hongo@sit.ac.jp

+81-48-585-6004