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XRD patterns of the HEed and HPed samples
with addition of various amounts of SiCw

Products

Relative density of HEed and
HPed bulk samples

95

96

97

98

99

100

0 1 2 3 4 5

R
el

at
iv

e d
en

si
ty

  (
%

)

Volume fraction of SiC whiskers  (%)

Hot-extruded

Hot-pressed

Typical pictures of (a) appearance and
(b) cross-section of the HEed sample

Typical pictures of (a) appearance
and (b) cross-section of the HPed
sample

10mm 10mm

(b)(a)

ypical pic
HP10mm 10mm

Extrusion 
direction

(a) (b)

HE

0

50

100

150

200

250

0 5 10 15 20 25 30 35

Ex
tr

us
io

n 
lo

ad
  (

kN
)

Stroke  (mm)

0vol%

1vol%

3vol%

5vol%

B

C

A

D

Extrusion load vs. stroke curves
under the conditions of R=7 at 450oC

HE

Experimental procedure

Mechanochemical 
Milling

•Zn, Sb powders

Mixing

•Powder mixture
•SiC whisker

Forming 

•Hot pressing
•Hot extrusion

Characterization

•Microstructure
•TE performance
•Hardness
•Fracture toughness

MixingHomogenizing Evaporation

40˚C

Pressing Vacuum encapsulation

Al can

Green 
body

Homogenizing

SiC
Whisker

Ethanol

Zn Sb

Mechanochemical mixing

Planetary mill

Ethanol

Zn 

Sb

Sample preparation

Hot-extrusion (HE) or hot-pressing (HP)

4Zn+3Sb→Zn4Sb3

Extrusion ratio R=7 350MPa
at 450˚C

HPHE

Fig. SEM images of 
Zn and Sb powders.

Zn4Sb3 compound
A promising thermoelectric material
High figure of merit in 200-400 ˚C

ZT=1.3 at 400 ˚C
Ref. T. Caillat et al., J. Phys. Chem. Solids, (1997) 

Potential applications:
Power generation from waste heat at factories

Drawback :
Extremely low fracture toughness

Strategy for  improvement :  
Incorporation of SiCw into matrix as reinforcements 
in order to introduce toughening mechanisms

Difficulties in achieving high density and
homogeneous dispersion of reinforcements

How does the performance of products depend on
forming processes?
(e.g. hot-pressing, hot-extrusion)
How does the reinforcement influence on
thermoelectric properties?

Objective: To clarify the effect of SiCw addition on
microstructure, mechanical properties, and
thermoelectric properties of the Zn4Sb3 bulk materials

Case-1 Zinc antimonide
Questions

SiC whisker (SiCw)

SEM image of SiC whiskers
used in this study

high strength
high stability
high thermal conductivity (~360 W/mK)
dimensions: 

diameter: 0.1 ~ 2μm
lengths:   5 ~ 50μm

α : Seebeck coefficient, 
ρ:  electrical resistivity, 
κ : thermal conductivity,
T : absolute temperature,
θ : power factor

TTZT
2

Temperature dependence of thermoelectric figure of merit (ZT) of Zn4Sb3
compared with other materials  [ G.J. Snyder et al., Nature Materials, (2004) ]

https://www.un.org/sustainabledevelopment/development-agenda/

focused

Possible solutions :
(e.g.)

• Energy saving technology
• Earth-friendly energies
• Green sustainable technology
• etc.

A thermoelectric module: 
How does it work?

Thermoelectric 
generation!

p type  

n type Exhausted heat 
ex) from steel plants,

motor vehicles, etc.

Hot sideCool side

Metal 
plate

Current

Peltier effect

Seebeck effect Heat 
flow

Electric 
power

A typical thermoelectric module

How is the efficiency, η determined ?
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TC

> The higher 
ZT is the more 

favorable
Carnot efficiency (≤1) 

The 17 Sustainable Development Goals (SDGs) of the 2030 Agenda for
Sustainable Development adopted by world leaders at a UN Sustainable
Development Summit in September 2015.
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How to improve the ZT value
TTZT
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What about the κph (phonon contribution) ?

(Mott  formula)

(Wiedemann-Franz Law)

Strategies to improve the ZT value
• To reduce the lattice thermal

conduction without large degradation in
the thermoelectric properties

• Effective sources for phonon scattering
induced by
– Grain boundary
– Inclusions
– Lattice defects
– Crystal structure

1

Example:
K. Biswas et al., Nature 489 (2012) 419. 

Microstructure controls
Grain refinement 
Composite
Precipitation, etc.

Thermoelectric properties
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(b)

Temperature dependence of the Seebeck coefficient and electrical resistivity of (a) HEed and (b)
HPed Zn4Sb3 samples. The filled and unfilled symbols indicate the Seebeck coefficient and
electrical resistivity, respectively
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(b)

Temperature dependence of power factor of (a) HEed and (b) HPed Zn4Sb3 samples
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Temperature dependence of thermal
conductivity of the HEed Zn4Sb3 samples
with various SiCw contents

Temperature dependence of dimensionless
figure of merit of the HEed Zn4Sb3 samples with
various SiCw contents
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(1) Dense and sound Zn4Sb3 bulk materials have been fabricated by both hot pressing and hot
extrusion techniques.

(2) Mechanical properties, especially toughness, were enhanced due to crack deflection, bridging
and pullout mechanisms.

(3) The thermoelectric performance was suppressed by addition of large amount of SiC whiskers.

Bi2Te3 compound

Case-2 Bismuth telluride

SEM images of the fracture surfaces of HPed Zn4Sb3 samples 
with addition of SiCw

SEM images of the fracture surfaces of HEed Zn4Sb3
samples with addition of SiCw

Microstructures

0vol%

5vol%3vol%
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Extrusion direction

Extrusion direction Extrusion direction

Extrusion direction

0vol%

5vol%3vol%

1vol%

(a) (b) Extrusion direction(d)Extrusion direction(c)
longitudinal-

section Extrusion
direction

cross-
section

Extrusion direction

SEM images of Zn4Sb3 bulk samples; (a) cross-section of the HPed sample without SiCw addition, (b) cross-
section of the HPed sample with 3vol% SiCw, and (c) and (d) cross-section and longitudinal-section of the HEed
sample with 3vol% SiCw, respectively.

of the H
HE

t SiCw
HE

sample
HP

SEM ima
HP

HPHE

Crack deflection and crack bridging seen in (a) HEed
and (b) HPed samples

Toughening mechanisms 

Extrusion 
direction

Crack 
propagation

Bridging

(a)

Crack 
propagation

Crack 
deflection

Bridging

(b)

SEM image of a fracture surface of the HPed sample with
3vol% SiCw, exhibiting a typical trace of whisker pullout

Pullout

fracture
HP

b id i

HPHE

Vickers hardness and fracture toughness of the
HEed and HPed Zn4Sb3 samples as a function of
volume fraction of SiCw
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Typical Vickers indentation on (a)
longitudinal-section and (b) cross-
section of the HEed sample

Extrusion direction
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HE

The thermoelectric performance and the mechanical properties
in Bi2Te3-alloys and Zn4Sb3 bulk materials are significantly
improved by micro-structure control such as grain refinement
and/or composite structure induced by the hot-extrusion
technique.

Conclusions

a b

c

A well-established thermoelectric material
-> High figure of merit, ZT 1 at 300 K 

Crystal structure: 
Rhombohedral (R-3m), a layered structure

-> Large anisotropy
c  ⁄ //c 1.10
c   ⁄ //c = 4.2 ~ 6.67
c   ⁄ //c  =  0.4 ~ 0.5
ΖT//c ~ 2 ΖT c

-> Cleavage at (0001) basal plane

α : Seebeck coefficient, 
ρ:  electrical resistivity, 
κ : thermal conductivity,
T : temperature

TZT
2

Crystal structure of 
Bi2Te3
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XRD patterns of the hot-extruded and 
SPSed Bi0.4Sb1.6Te3 bulk samples 

† The indices for peaks are reduced from (h k i l) to (h k l).
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HV 108 (360˚C) :
2.5 times higher 

than the Hot-
pressed sample

Thermal conductivity and dimensionless 
figure-of-merit at room temperature

TZT
2

@ room temp. @ room temp.

Thermal conductivity, was measured by 
laser-flush technique
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direction

Heat flow

Seebeck coefficient and electrical resistivity
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Ref. for the HPed sample D. B. Hyun , J. S. Hwang , J. D. Shim, J. Mater. Sci., 36 (2001) 1285-1291.
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Mechanical alloying (MA) for starting powders
-> To promote reaction between raw powders
-> To refine the sizes of the powders

Hot-extrusion process
-> Introduction of a preferential orientation
-> Grain size reduction

Hot-extrusion process for bulk 
Bi0.4Sb1.6Te3 materials

Powder

Hot extrusion

Conditions:
R = 25,

360 ~ 450˚C

Mechanical
Alloying

Hot extrusion

Ceramic pot & balls
filled with  Ar

Pressing
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Temperature : 360 ~ 450˚C
Extrusion ratio: R=25
Punch speed: 1 mm/min.

Bi0.4Sb1.6Te3

A

A

Objectives
To clarify the extrusion behavior as well as thermoelectric and
mechanical properties of hot-extruded Bi0.4Sb1.6Te3 (p-type)
bulk materials

Summary – Zinc antimonide 

(1) The Bi0.4Sb1.6Te3 bulk materials have been successfully prepared by mechanical alloying and hot-extrusion techniques.
(2) The grain refinement and preferential orientation could be obtained simultaneously.
(3) The enhancement in hardness (HV108) and ZT value of 1.2 at room temperature were obtained.

Summary – Bismuth telluride

Processing  temperature (˚C)Processing  temperature (˚C)

Mechanical properties
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